Journal of Organometallic Chemistry, 136 (1977) C1–C3 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

A CHELATE METHYLDISULPHIDO-LIGAND FROM METHYLATION OF CO-ORDINATED DISULPHUR. STRUCTURE OF $[Os(n^2-S_2Me)(CO)_2(PPh_3)_2]Clo_4$

G.R. CLARK and D.R. RUSSELL

Chemistry Department, University of Leicester, Leicester LE1 7RH (U.K.)

W.R. ROPER* and A. WALKER

Department of Chemistry, University of Auckland, Auckland (New Zealand)

(Received June 9th, 1977)

Summary

The co-ordinated disulphur molecule in $OS(S_2)(CO)_2(PPh_3)_2$ is methylated by methyltrifluoromethylsulphonate giving $[OS(n^2-S_2Me)(CO)_2(PPh_3)_2]SO_3CF_3$; x-ray crystal structure analysis of $[OS(n^2-S_2Me)(CO)_2(PPh_3)_2]ClO_4.{}^{1}_{2}C_6H_6$, reveals that the S_2Me-ligand is bidentate, and attached in an almost symmetrical manner.

There are examples of co-ordinated dioxygen in Group VIII transition metal complexes reacting with sulphur dioxide, carbon dioxide, carbon disulphide, nitrogen dioxide, alkyl isocyanides, ketones, aldehydes and triphenylphosphine. These reactions have been reviewed.¹ In contrast, the reactivity of co-ordinated disulphur has been little studied apart from oxidation with periodate to complexes of S₂O and S₂O₂.² We have found that the zerovalent complexes Ru(CO)₂(PPh₃)₃ and Os(CO)₂(PPh₃)₃ with S₈ yield Ru(S₂)(CO)₂(PPh₃)₂ and Os(S₂)(CO)₂(PPh₃)₃ respectively, analogous to the previously reported dioxygen complexes,³ and as part of an investigation of the chemistry of co-ordinated S₂ we describe here the methyldisulphido-ligand produced by direct methylation of S₂ with methyltrifluoromethylsulphonate. 1 equivalent of Os(CO)₂(PPh₃)₃ and $\frac{1}{2}$ equivalent of S₈ in benzene under rigorously deoxygenated conditions slowly forms orange-coloured Os(S₂)(CO)₂(PPh₃)₂ in approximately 70% yield, $(v_{CO} 1998, 1944 \text{ cm}^{-1})$. Ru(S₂)(CO)₂(PPh₃)₂ forms similarly and has $v_{CO} 2000$, 1955 cm⁻¹. 1 equivalent of Os(S₂)(CO)₂(PPh₃)₂ reacts rapidly with 1 equivalent of CH₃SO₃CF₃ forming pale yellow [Os(n²-S₂Me)(CO)₂(PPh₃)₂]SO₃CF₃ ($v_{CO} 2045$, 1980 cm⁻¹; ¹H n.m.r. τ , 8.0 (s) S-CH₃). This compound can be converted to a perchlorate and the i.r. spectra of both these salts show that the anions are not co-ordinated and suggest therefore that the S₂Me-ligand is bidentate. Reaction with iodide anion produces a compound which from solubility behaviour is no longer a salt and is probably Os(n¹-S₂Me)I(CO)₂(PPh₃)₂. This compound has not been thoroughly characterised because the solid is unstable, evolving an evil-smelling gas.

Cream-coloured crystals of $[Os(\eta^2 - S_2Me)(CO)_2(PPh_3)_2]ClO_4.\frac{1}{2}C_6H_6$ from CH_2Cl_2/C_6H_6 are triclinic, a = 14.23(1), b = 17.30(1), c = 10.44(1) A, $\alpha = 102.1(2)$, $\beta = 102.7(2)$, $\gamma = 105.5(1)$, Z = 2, space group $P\overline{l}$. Intensity data for the layers h k 0 through h k 10 were collected on a Stoe Weissenberg diffractometer using monochromatic Mo - K_{χ} radiation and an ω scan technique. The structure was solved using conventional methods and at the present stage of least squares refinement the Os, Cl, S, and P atoms have been assigned anisotropic thermal parameters and R = 0.076 for 4693 observed reflections. The geometry of the cation is shown in the figure. The co-ordination about the osmium atom is distorted octahedral with trans phosphines. The S2Me-ligand is nearly symmetrically co-ordinated to the metal in that the two Os-S distances differ by only 50. The S-S bond length is close to that found in S_8 (2.04 Å) and may be slightly shorter than those suggested to correspond to a bond order of 1.0 (2.05 -2.08 Å). For comparison, we can note the S=S distance in S2 (qas phase) is 1.887 Å. The overall geometry is remarkably similar to that in [Ir(S₂) (Ph₂PCH₂CH₂PPh₂)₂]⁺ where S-S is 2.066 $Å^4$. The S(1)-C(Methyl) bond (1.82 Å) is normal. The angle C(Me)-S(1)-Os is 117.8°. At this stage of refinement

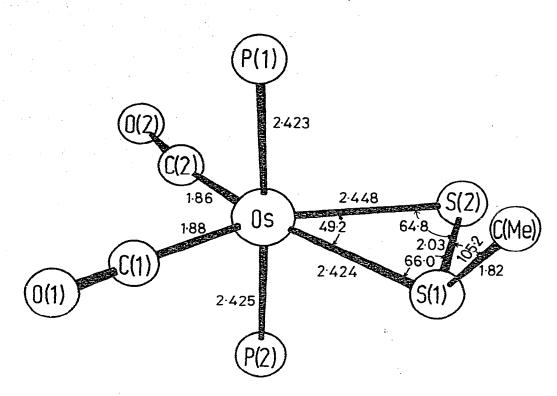


Fig. 1. Structure of $[Os(\eta^2 - S_2Me)(CO)_2(PPh_3)_2]^+$

there is no significant difference between the two Os-CO distances.

We thank the University of Auckland for granting study leave to G.R.C. and the University of Toronto for granting study leave to A.W.

References

- 1. J.S. Valentine, Chem.Rev., 73 (1973) 235.
- G. Schmid and G. Ritter, Angew.Chem.(Internat.Ed.) 14 (1975) 645; Chem.Ber., (1975) 3008.
- 3. B.E. Cavit, K.R. Grundy and W.R. Roper, J.Chem.Soc.Chem. Commun., (1972) 60.
- 4. W.D. Bonds, Jr., and J.A. Ibers, J.Amer.Chem.Soc., 94 (1972) 3413.